Рефераты Інтегрування раціональних функцій

Вернуться в Математика

Інтегрування раціональних функцій
Інтегрування раціональних функцій


План

Інтегрування раціональних функцій

Прості раціональні дроби

Неправильні раціональні дроби

Інтегрування правильного раціонального дробу. Формула Остроградського

1. Інтегрування раціональних дробів

Прості раціональні дроби

Простими раціональними дробами називаються такі чотири види дробів :

,

де –дійсні числа ; – ціле число , тобто не розкладається на лінійні множники в множині дійсних чисел .

Розглянемо тепер інтеграли від цих дробів :

в) ;

г)

Цей дріб може бути зведений до іншого вигляду виділенням у знаменнику повного квадрата, а в чисельнику похідної від знаменника, помноженої на деяку константу .

Маємо

.

Отже,

Якщо позначити

, то одержимо

то одержимо

Тому

Щоб одержати кінцевий результат, досить повернутися до змінної і замінити та їх значеннями.

г) Четвертий тип простого дробу за допомогою тих самих перетворень, що й третій, зведеться до вигляду

Тому

Останній же інтеграл може бути про інтегрований за рекурентною формулою (9.3).

Неправильні раціональні дроби

Раціональний дріб має вигляд , де і - поліноми за степенів, відповідно і . Якщо степінь полінома не менший за степінь полінома , тобто то дріб називається неправильним. Якщо ж степінь полінома менший, ніж степінь полінома , то дріб називається правильним. Усякий неправильний дріб може бути поданий сумою деякого полінома (ціла частина дробу) степеня і правильного дробу. Цілу частину неправильного дробу можна виділити прямим діленням чисельника на знаменник. Ділення це продовжується доти, поки остача від ділення (це буде деякий поліном або просто число) матиме менший степінь, ніж степінь полінома, що є дільником.

Приклад 1. Виділити цілу частину дробу

Оскільки

Добавить в Одноклассники    

 

Rambler's Top100