Рефераты До теорії дослідів Майкельсона і Троутона-Нобеля

Вернуться в Физика

До теорії дослідів Майкельсона і Троутона-Нобеля
До теорії дослідів Майкельсона і Троутона-Нобеля


У цій праці заперечується висунуте ще дорелятивістською фізикою твердження, згідно з яким, не виявлені дослідами Майкельсона і Троутона-Нобля ефекти, які передбачає теорія, компенсуються іншими ефектами. Ставиться за мету вдосконалити теорію, узгодивши її з результатами згаданих дослідів.

Для переходів між інерційними системами відліку і із початками і теоретично існують чотири роди перетворень [1; 2] координат і часу:

(1.І)

(2.ІІ)

(3.ІІІ)

(4.ІV)

Тут і координати довільної точки у системах і ; де причому і ­– сталі швидкості руху системи і певного сигналу відносно системи а час руху; час руху сигналу відносно системи ; Римськими цифрами І, ІІ, ІІІ, ІV при нумерації формул відмічаємо, до якого з чотирьох родів перетворень ці формули належать. Рівності (3) і (4) складають перетворення Фогта (1887) і Лоренца відповідно. Просторова частина в (1) становить перетворення Галілея. Усі чотири роди перетворень забезпечують коваріантність рівняння сферичного фронту будь-яких хвиль, який поширюється зі швидкістю :

(5)

Тут коваріантність указує на узгодженість між перетвореннями координат і часу.

Обов’язковим наслідком принципу відносності є вимога інваріантності рівнянь щодо певних перетворень, які забезпечують перехід між системами і . Такі перетворення повинні бути ортогональними, або симетричними. Принцип відносності вимагає видозмінювати неінваріантні рівняння або несиметричні перетворення в такий спосіб, щоб останні набули необхідної симетрії [3, 77]. Так, первісні неортогональні лоренцівські перетворення

(6)

шляхом їх симетризації зводять до релятивістських (4) [4, 171]. З-посеред перетворень (1)-(4) тільки (4) симетричні.

Для встановлення зв’язку теоретичних положень із експериментальними фактами потрібно здійснювати перехід від чотири- до три-світу, задовольняючи при цьому вимоги принципу відносності. Так, рівняння чотири-світу (5) при фіксованому стає формою

, (7)

що описує сферу При цьому закон сферичності фронту хвиль залишився в силі. Однак перетворення Лоренца не забезпечують інваріантності закону (7). Проаналізуємо два підходи до усунення цього протиріччя, які умовно назвемо класичним і некласичним

Добавить в Одноклассники    

 

Rambler's Top100