Рефераты Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією

Вернуться в Математика

Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією
Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією


Згідно з теоремою існування визначеного інтеграла цей інте­грал існує, якщо виконані умови:

1) відрізок інтегрування [а, b] скінчений;

2) підінтегральна функція f(x) неперервна або обмежена і має скінченну кількість точок розриву. Якщо хоч би одна із умов не виконується, то визначений інтеграл називають невласним.

Якщо не виконується перша умова, тобто b = ∞ або а = ∞ або а = -∞ та b = ∞, то інтеграли називають невласними інтегралами з нескінченними межами.

Якщо не виконується лише друга умова, то підінтегральна функція f(x) має точки розриву другого роду на відрізку інтегрування [а, b]. В цьому випадку називають невласним інтегралом від розривної функції або від функції, необмеженої в точках відрізку інтегрування.

1. Невласні інтеграли з нескінченними межами інтегрування (невласні інтеграли першого роду).

Нехай функція f(х) визначена на проміжку [a; +∞) і інтегрована на будь-якому відрізку [а, b], де — ∞ < a < b < +∞. Тоді, якщо існує скінченна границя

(51)

її називають невласним інтегралом першого роду і позначають так:

(52)

Таким чином, за означенням

(53)

У цьому випадку інтеграл (52) називають збіжним, а підінтегральну функцію f(x) — інтегровною на проміжку [а; +∞).

Якщо ж границя (51) не існує або нескінченна, то інтеграл (52) називається також невласним, але розбіжним, а функція f(х) — неінтегровною на [a; +∞).

Аналогічно інтегралу (53) означається невласний інтеграл на проміжку (-∞; b]:

(54)

Невласний інтеграл з двома нескінченними межами визначається рівністю

(55)

де с — довільне дійсне число. Отже, інтеграл зліва у формулі (55) існує або є збіжним лише тоді, коли є збіжними обидва інтеграли справа. Можна довести, що інтеграл, визначений формулою (55), не залежить від вибору числа с.

З наведених означень видно, що не­власний інтеграл не є границею інтегра­льних сум, а є границею означеного ін­теграла із змінною межею інтегрування.

Зауважимо, що коли функція f(x) неперервна і невід'ємна на проміжку [а; +∞) і коли інтеграл (53) збігається, то природно вважати, що він виражає площу необмеженої області (рис. 7.12).

рис. 7.12

Приклад.

Обчислити невласний інтеграл або встановити його розбіжність:

а) б)

в) д)

а) За формулою (53) маємо

Отже інтеграл а) збігається.

б)

Оскільки ця границя не існує при а → -∞, то інтеграл б) розбіжний.

в)

Отже інтеграл в) розбіжний,

г) Якщо = 1, то

Якщо ≠ 1, то

Отже інтеграл г) є збіжним при > 1 і розбіжним при

Добавить в Одноклассники    

 

Rambler's Top100