Рефераты Елементи комбінаторики

Вернуться в Математика

Елементи комбінаторики
Елементи комбінаторики


§ 1. Поняття множини. Операції над множинами

Поняття множини належить до первісних понять математики, якому не дається означення Множину можна уявити собі як су­купність деяких предметів, об'єднаних за довільною характерис­тичною ознакою Наприклад, множина учнів класу, множина цифр десяткової нумерації (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), множина натуральних чисел, множина зернин у даному колосі, множина букв українського алфавіту, множина точок на прямій

Предмети, з яких складається множина, називаються її елементами і позначаються малими буквами латинського алфавіту. Наприклад, а = 5 - елемент множини цифр десяткової нумерації Для позначення множин використовують великі букви латинсь­кого алфавіту або фігурні дужки, всередині яких записуються елементи множини При цьому порядок запису елементів не має значення Наприклад, множину цифр десяткової нумерації мож­на позначити буквою М (чи будь-якою великою буквою латин­ського алфавіту) або записати так {1, 3, 5, 2, 4, 6, 8, 7, 9, 0}

Належність предмета даній множині позначається символом , а неналежність - символом (інколи ) Наприклад, число 7 А, де А - множина чисел першого десятка, а число 12 A.

Множини бувають скінченні і нескінченні. У скінченній множині міститься певна кількість елементів, тобто кількість елементів скінченної множини виражається натуральним чис­лом Наприклад, множина М цифр десяткової нумерації скінчен­на і містить десять елементів. У нескінченній множині - нескін­ченна кількість елементів. Наприклад, множина натуральних чисел, множина точок прямої - нескінченні множини.

Множина, в якій немає жодного елемента, називається порож­ньою і позначається символом . Наприклад, множина точок перетину двох паралельних прямих - порожня множина

Якщо множина В складається з деяких елементів даної мно­жини А (і тільки з них), то множина В називається підмножиною множини А. У такому разі співвідношення між множинами А і В позначається так В А (читається "В міститься в А" або "В — підмножина А"). Якщо В може й дорівнювати А, то вживається символ В А. Знак називається знаком нестрогого включення, а знак - знаком строгого включення.

Порожня множина є підмножиною будь-якої множини, тобто А.

Саму множину А можна розглядати як підмножину А, тобто А А.

Множину задають двома основними способами:

1) переліченням всіх її елементів;

2) описанням характеристичної властивості її елементів. Наприклад: а) В = {o,,¡} - множина, задана переліченням елементів; б) X - множина коренів квадратного рівняння х2 = 25. Множина X задана характеристичною властивістю елементів - бути коренем рівняння х2 = 25". Цю саму множину можна зада­ти і переліченням її елементів: X = {-5; 5}.

Дві множини називаються рівними, якщо вони складаються з тих самих елементів. Наприклад, множини коренів рівняння х2 = 25 і |x| = 5 рівні між собою. Справді, X = {-5; 5} і Y = {-5; 5}, де Y - множина розв'язків рівняння |x|-5. Отже, X = Y.

Над множинами виконуються певні операції (дії). Зазначимо три з них.

Переріз множин

Добавить в Одноклассники    

 

Rambler's Top100