Рефераты Первісна функція і неозначений інтеграл. Основні властивості неозначеного інтеграла.Таблиця основних інтегралів

Вернуться в Математика

Первісна функція і неозначений інтеграл. Основні властивості неозначеного інтеграла.Таблиця основних інтегралів
Первісна функція і неозначений інтеграл. Основні властивості неозначеного інтеграла.Таблиця основних інтегралів


План

Первісна функція

Неозначений інтеграл

Основні властивості неозначеного інтеграла

Таблиця основних інтегралів

Тільки допустивши нескінченно малу (величину)

для спостереження – диференціал історії,

тобто однорідні захоплення людей, і досягнувши

мистецтва інтегрування (брати суми цих нескінченно

малих ), ми зможемо надіятись на пізнання законів історії .

О. М. Толстой

1. Неозначений інтеграл

За допомогою диференціального числення вивчають локальні властивості функції однієї або кількох змінних тобто властивості як завгодно малого околу точки, яка належить графіку функції однієї змінної, або поверхні, що описується функцією двох змінних , або гіперповерхні, що описується функцією багатьох змінних . Для таких властивостей відносять поняття зростання і спадання функції в точці, екстремумів, областей опуклості та вгнутості, точок перегину, характеристики функції в околі точок розриву, поведінки на нескінченності .

Основним поняттям диференціального числення були похідна та диференціал, які виникли з граничних переходів у разі прямування приростів незалежних змінних до нуля ( прямування точок, що належать геометричному об’єкту, описуваному функцією, до заданої конкретної точки ).

Але такі поняття як довжина дуги, площа області, обмеженої замкненою плоскою кривою, об’єм області, обмеженої замкненою поверхнею, статичні моменти тіла, центр його ваги, момент інерції, робота сили, внутрішня енергія газу, атмосферний тиск на певній висоті й багато інших проблем природознавства, нашого повсякденного життя вимагають знання функцій, що описують ці поняття в цілому , а не лише в околі окремих точок . Проте ці дві характеристики (характеристика функції в околі точки і характеристика функції в цілому ) взаємозв’язані. Так, наприклад, знаючи, як визначати момент інерції матеріальної точки відносно деякої площини, можна прийти до способу визначення моменту інерції тіла . Для цього досить мислено розглядати тіло як множину окремих його частин достатньо малих розмірів (диференціювання ) і, вважаючи їх матеріальними точками, обчислити суму моментів інерції цих частин відносно площини. У результаті отримаємо наближено момент інерції тіла . Переходячи в цій сумі до межі , коли розміри частин прямують до нуля (інтегрування ) , дістанемо точне значення моменту інерції тіла .

Отже диференціювання за певних припущень є оберненою дією відносно інтегрування і, навпаки, подібно до того, як множення, ділення, піднесення до степеня і добування кореня, логарифмування і потенціювання, є взаємно оберненими діями .

1.1. Означення

Функція , для якої виконується рівність , називається первісною (або невизначеним інтегралом ) відносно функції , і позначається символом . Оскільки де – довільна константа , то теж є первісною для функції

Функцію називають невизначеним інтегралом функції , тобто

. ( 8.15)

Отже, для кожної функції , для якої існує первісна

Добавить в Одноклассники    

 

Rambler's Top100