Рефераты Вычисление интеграла фукции f(x) методом Симпсона

Вернуться в Математика

Вычисление интеграла фукции f(x) методом Симпсона
Вычисление интеграла фукции f(x) методом Симпсона



С О Д Е Р Ж А Н И Е

Введение . 2

1. Постановка задачи 3

2. Математическая часть . 4

3. Описание метода решения задачи 9

4. Описание алгоритма решения задачи . 10

5. Текст программы . 11

6. Результаты работы программы 15

Заключение 16

Список использованных источников: 17

Введение

История появления и развития персональных компьютеров является одним из наиболее впечатляющих явлений нашего века. С момента появления первых образцов персональных компьютеров прошло меньше 25 лет, но сейчас без них уже немыслимо огромное количество областей человеческой деятельности - экономика, управление, наука, инженерное дело, издательское дело, образование, культура и т.д. Интерес к персональным компьютерам постоянно растет, а круг их пользователей непрерывно расширяется. В число пользователей ПЭВМ вовлекаются как новички в компьютерном деле, так и специалисты по другим классам ЭВМ.

Язык Паскаль - это один из наиболее распространённых языков программирования 80-90х годов , поддерживающий самые современные методологии проектирования программ (нисходящее, модульное проектирование, структурное программирование) имеют свою достаточно богатую историю развития.

Новую жизнь языку дала фирма Борланд, разработавшая на его базе семейство Паскаль – систем, называемых Турбо Паскалем. Интегрированная среда, обеспечивающая многооконную разработку программной системы, обширный набор встроенный в неё средств компиляции и отладки , доступный для работы через легко осваиваемое меню, - всё это обеспечивает высокую производительность труда программиста, недостижимую при работе со старыми средами.

Язык Турбо Паскаль хорошо подходит для обучения программированию.










1. Постановка задачи

Заданием на курсовую работу является создание программы на языке программирования Турбо Паскаль, которая должна осуществлять решение следующей задачи :

Вычислить приближённое значение интеграла функции f(x) на интервале с точностью до 0.01 методами Симпсона и трапеции с целью сравнения.

Интегрируемая функция: .

Определить метод, который решает поставленную задачу за минимальное число повторений.

Построить график функции f(x) на заданном интервале. Решить поставленную задачу с использованием функций и процедур алгоритмического языка Турбо Паскаль.




















2. Математическая часть

Для приближённого вычисления интеграла функции f(x) используются методы приближённого интегрирования, наиболее употребительные из них основаны на замене интеграла конечной суммой. Для вычисления промежуток от a(x0) до b(xn) разбивается на n равных частей, и для точек деления x0 , x1 , x2 , x3 , . . . , xn-1 , xn вычисляются значения интегрируемой функции y. Затем необходимо воспользоваться формулой приближённого интегрирования:

1) Формула трапеций (рис.1) :

.(1)


Рис.1.

2) Формула Cимпсона (парабол) (рис.2) :

(2)


Рис.2.

В моей курсовой работе рассматривается приближенное вычисление интеграла

Добавить в Одноклассники    

 

Rambler's Top100