Рефераты Методы решения уравнений в странах древнего мира

Вернуться в Математика

Методы решения уравнений в странах древнего мира
Методы решения уравнений в странах древнего мира



История алгебры уходит своими корнями в древние времена. Задачи, связанные с уравнениями, решались ещё в Древнем Египте и Вавилоне. Теория уравнений интересовала и интересует математиков всех времён и народов.

В Древнем Египте и Вавилоне использовался метод ложного положения («фальфивое правило»)

Уравнение первой степени с одним неизвестным мо­жно привести всегда к виду ах + Ь == с, в котором а, Ь, с — целые числа. По правилам арифметических дейст­вий ах = с — b,


Если Ь > с, то с — b число отрицательное. Отрицатель­ные числа были египтянам и многим другим более позд­ним народам неизвестны (равноправно с положитель­ными числами их стали употреблять в математике толь­ко в семнадцатом веке).

Для решения задач, которые мы теперь решаем урав­нениями первой степени, был изобретен метод лож­ного положения.

В папирусе Ахмеса 15 задач решается этим методом. Решение первой из них позволяет понять, как рассуждал автор.

Египтяне имели особый знак для обозначения неиз­вестного числа, который до недавнего прошлого читали «хау» и переводили словом «куча» («куча» или «неизве­стное количество» единиц). Теперь читают немного ме­нее неточно: «ага».

bqt задача № 24 сборника Ахмеса:

«Куча. Ее седьмая часть ('подразумевается: «дают в сумме») 19. Найти кучу».

Запись задачи нашими знаками:


Решение Ахмеса может быть представлено в наших символах в следующих четырех столбцах:


Во многих задачах в начале или в конце встречаются слова: «Делай как делается», другими словами: «Делай, как люди делают».

Смысл решения Ахмеса легко понять.

Делается предположение, что. куча есть 7; тогда ее часть есть 1. Это записано в первом столбце.

Во втором столбце записано, что при предположении х=7 куча и ее часть дали бы 8 вместо 19. Удвоение предположения дает 16. Автор, в уме очевидно, прики­дывает, что дальше удваивать предположение нельзя, так как тогда получится больше 19. Он записывает 16, ставит перед числом две точки для обозначения удвое­ния первоначального предположения и отмечает значком (у нас — звездочкой) результат; для получения в сумме 19 первоначальное предположение надо умножить -на 2 с некоторым добавлением, так как для получения точ­ного результата, 19, не хватает еще 19—16=3. Ахмес находит от 8, получает 4. Так как это больше нехватки 3, то на предположение умножить нельзя. Но от 8 есть 2, от восьми 1. Ахмес видит, что и первона­чального результата дают точно те 3 единицы, которых не хватало. Отметив и значками, Ахмес убедился, что первоначальное предположение для кучи (7) надо помножить на

Умножение числа 7 на смешанное число Ахмес заменяет умножением смешанного числа на 7. В третьем столбце выписаны: часть искомой кучи есть , удвоенное это число: и учетверенное: . Сумма этих трех чисел, равная числу , есть произведение первоначального предположения 7 на

Добавить в Одноклассники    

 

Rambler's Top100