Рефераты Фигуры категорического силлогизма

Вернуться в Языковедение

Фигуры категорического силлогизма
Фигуры категорического силлогизма



Фигуры категорического силлогизма

1. Предисловие

2. Категорические высказывания

3. Фигуры категорического силлогизма

4. Основные правила фигур.

5. Модусы фигур

6. Литература

Предисловие

В более чем двухтысячелетней истории логики настоящее время представляет один из наиболее интенсивных периодов ее развития очень быстро растут и объем новой информации, и количество новых результатов. Кроме того, если еще недавно логика была сферой интересов лишь сравнительно узкого круга специалистов, то сейчас она превратилась в дисциплину важную и нужную для многих, а в области современного образования - для всех.

Учение о силлогизме является исторически первым законченным фрагментом логической теории умозаключений. Оно систематически изложено Аристотелем в «Аналитиках» и под именем силлогистики существует до настоящего времени, обладая самостоятельной ценностью.

Категорические высказывания

Логика высказываний сводит сложные высказывания к простым (атомарным).

Она рассматривает сложные высказывания как функции от простых, но простые при этом уже не расчленяются.

Высказывания, имеющую структуру, выраженную формулой «S есть P» называют ут­вер­дительными, а имеющие структуру «S не есть P» - отрицательными. Это деление по качеству.

Кроме того, категорические высказывания делятся по количеству на единичные (Это S есть (или не есть) P), общие (Все S есть (или не есть) P) и частные (Некоторые S есть (или не есть) P). Слова «все» и «некоторые» называют кванторными словами.

При изучении умозаключений (силлогизмов) не делают различий между еди­нич­ными и общими высказываниями, ибо в общих видах некоторый признак утверждается (или отрицается) относительно каждого элемента рассматриваемого множества предметов. Раз­ли­чие лишь в том, что множество, о котором идет речь в единичном высказывании состоит из одного элемента, а в общем - из более чем одного.

Таким образом, классификация категорических высказываний по качеству и коли­честву содержит четыре типа:

n общеутвердительные (А)

n общеотрицательные (Е)

n частноутвердительные (I)

n частноотрицательные (O)

Буквы A, E, O, I для символических обозначений взяты из латинского слова affirmo - утверждаю - для двух утвердительных высказываний и из слова nego - отрицаю - для отрицательных.

Фигуры категорического силлогизма

Расмотрим (на примере) строение силлогизма.

Каждый человек (М) - смертен (Р)

Сократ (S) - человек(М)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Сократ (S) - смертен (P)

Силлогизм состоит из трех категорических высказываний (две посылки и одно заключение, которое к стандартной записи пишется под чертой). Субъект заключения обозначается (обычно) буквой S, а предикат - P, но в силлогизме S называется меньшим термином, а P - большим; оба они называются крайними терминами. Термин, дважды повторяющийся в посылках, называется средним (лат. - terminus medius) и обозначается буквой M.

Посылки также имеют собственные названия: та, которая содержит термин P, называется большей посылкой, а содержащая термин S - меньшей посылкой.

Таким образом, категорический силлогизм - это такой дедуктивный вывод, в заключении которого связь между крайними терминами (S и P) устанавливается на основании их (зафиксированного в посылках) отношения к среднему термину (M).

В общем виде структуру силлогизма можно представить так:

R(X, Y) ^ Q(Y, Z) -> L(XZ),

где R, Q, L могут иметь значения A, E, I, O;

X, Y означает MP или PM,

Y,Z - MS

X,Z - SP

Конъюнкцию посылок в силлогизме можно рассматривать как антецендент, а заключение - как консеквент.

Приняв эти соображения, структуру приведенного примера следует записать так:

A(MP) ^ I(SM) -> I(SP).

Если рассматривать только относительное расположение трех терминов, то получится следующая общая структура нашего вывода, именуемая первой фигурой силлогизма:

M P

S M

----------

S P

1-я фигура

(1-я фигура)

Ясно, что кроме этой фигуры существуют еще три, ибо термин М может стоять в каждой посылке как на месте субъекта, так и на месте предиката:

P M M P P M

S M M S M S

------ ------ ------

S P S P S P

2-я фигура 3-фигура 4-фигура

Таким образом, фигуры силлогизма, это такие его разновидности, которые отличаются друг от друга положением среднего термина

Добавить в Одноклассники    

 

Rambler's Top100