Рефераты Количественные методы в управлении

Вернуться в Экономико-математическое моделирование

Количественные методы в управлении
Содержание.



Содержание. 2


1. Оптимальное производственное планирование. 3

1.1 Линейная задача производственного планирования. 3
1.2 Двойственная задача линейного программирования. 4
1.3 Задача о комплектном плане. 5
1.4 Оптимальное распределение инвестиций. 6

2. Анализ финансовых операций и инструментов. 9

2.1 Принятие решений в условиях неопределенности. 9
2.2 Анализ доходности и рискованности финансовых операций. 11
2.3 Статистический анализ денежных потоков. 13
2.4 Задача формирования оптимального портфеля ценных бумаг. 17

3. Модели сотрудничества и конкуренции. 19

3.1 Сотрудничество и конкуренция двух фирм на рынке одного товара.
19
3.2 Кооперативная биматричная игра как модель сотрудничества и
конкуренции двух участников. 20
3.3 Матричная игра как модель конкуренции и сотрудничества. 22

4. Социально-экономическая структура общества. 24

4.1 Модель распределения богатства в обществе. 24
4.2 Распределение общества по получаемому доходу. 26



1. Оптимальное производственное планирование.



1.1 Линейная задача производственного планирования.



48 30 29 10 -
удельные прибыли

нормы расхода - 3 2 4 3 198
2 3 1 2 96
- запасы ресурсов
6 5 1 0 228

Обозначим x1,x2,x3,x4 - число единиц 1-й,2-й,3-й,4-й продукции,
которые планируем произвести. При этом можно использовать только имеющиеся
запасы ресурсов. Целью является получение максимальной прибыли. Получаем
следующую математическую модель оптимального планирования:

P(x1,x2,x3,x4) =48*x1+30*x2+29*x3+10*x4 --> max
3*x1+ 2*x2+ 4*x3+ 3*x4<=198
2*x1+ 3*x2+ 1*x3+ 2*x4<= 96
6*x1+ 5*x2+ 1*x3+ 0*x4<=228
x1,x2,x3,x4>=0
Для решения полученной задачи в каждое неравенство добавим
неотрицательную переменную. После этого неравенства превратятся в
равенства, в силу этого добавляемые переменные называются балансовыми.
Получается задача ЛП на максимум, все переменные неотрицательны, все
ограничения есть равенства, и есть базисный набор переменных: x5 - в 1-м
равенстве, x6 - во 2-м и x7 - в 3-м.

P(x1,x2,x3,x4)=48*x1+30*x2+29*x3+10*x4+ 0*x5+ 0*x6+ 0*x7 -->max
3*x1+ 2*x2+ 4*x3+ 3*x4+ x5 =198
2*x1+ 3*x2+ 1*x3+ 2*x4 + x6 = 96
6*x1+ 5*x2+ 1*x3+ 0*x4 + x7=228
x1,x2,x3,x4,x5,x6,x7>=0

| |48 |30 |29 |10 |0 |0 |0 |Hi |
| | | | | | | | |/qis |
|С |Б |Н |Х1 |Х2 |Х3 |Х4 |Х5 |Х6 |Х7 | |
|0 |Х5 |198 |3 |2 |4 |3 |1 |0 |0 |66 |
|0 |Х6 |96 |2 |3 |1 |2 |0 |1 |0 |48 |
|0 |Х7 |228 |6 |5 |1 |0 |0 |0 |1 |38 |
|Р |0 |-48 |-30 |-29 |-10 |0 |0 |0 | |
|0 |Х5 |84 |0 |-0.5 |3.5 |3 |1 |0 |-0.5|24 |
|0 |Х6 |20 |0 |1.33 |0.67|2 |0 |1 |-0.3|30 |
| | | | | | | | | |3 | |
|48 |Х1 |38 |1 |0.83 |0.17|0 |0 |0 |0.17|228 |
|Р |1824 |0 |10 |-21 |-10 |0 |0 |8 | |
|29 |Х3 |24 |0 |-0.14 |1 |0.86 |0.29 |0 |-0.1| |
| | | | | | | | | |4 | |
|0 |Х6 |20 |0 |1.43 |0 |1.43 |-0.19|1 |-0.2| |
| | | | | | | | | |4 | |
|48 |Х1 |34 |1 |0.86 |0 |-0.14 |-0.05|0 |0
Добавить в Одноклассники    

 

Rambler's Top100