Рефераты Методы измерения частоты

Вернуться в Цифровые устройства

Методы измерения частоты
Министерство Образования РФ

Чебоксарский Филиал (институт) Московского Государственного Открытого
Университета



РЕФЕРАТ

ПО ДИСЦИПЛИНЕ "МЕТРОЛОГИЯ И СТАНДАРТИЗАЦИЯ"

НА ТЕМУ: "МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТОТЫ"



ЧЕБОКСАРЫ 2000
МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТОТЫ

ОБЩИЕ СВЕДЕНИЯ

Частотой колебаний называют число полных колебаний в единицу времени:
f=n/t (1)

где t—время существования п колебаний.
Для гармонических колебаний частота f = 1/T, где Т — период колебаний.
Единица частоты герц определяется как одно колебание в одну секунду.
Частота и время неразрывно связаны между собой, поэтому измерение той или
другой величины диктуется удобством эксперимента и требуемой погрешностью
измерения. В Международной системе единиц СИ время является одной из семи
основных физических величин. Частота электромагнитных колебаний связана с
периодом колебания Т и длиной однородной плоской волны в свободном
пространстве ( следующими соотношениями: fT = 1 и f( = с, где с—скорость
света, равная 299 792,5 ± 0,3 км/с.
Спектр частот электромагнитных колебаний, используемых в радиотехнике,
простирается от долей герца до тысяч гигагерц. Этот спектр вначале
разделяют на два диапазона — низких и высоких частот. К низким частотам
относят и нфра звуковые (ниже 20 Гц), звуковые (20— 20 000 Гц) и
ультразвуковые (20—200 кГц). Высокочастотный диапазон, в свою очередь,
разделяют на высокие частоты (20 кГц — 30 МГц), ультравысокне (30 — 300
МГц) и сверхвысокие (выше 300 МГц). Верхняя граница сверхвысоких частот
непрерывно повышается и в настоящее время достигла 80 ГГц (без учета
оптического диапазона). Такое разделение объясняется разными способами
получения электрических колебаний и различием их физических свойств, а
также особенностями распространения на расстояние. Однако четкой границы
между отдельными участками спектра провести невозможно, поэтому такое
деление в большой степени условно.


МЕТОД ПЕРЕЗАРЯДД КОНДЕНСАТОРА
Присоединим конденсатор, емкость которого С, к источнику напряжения U.
Конденсатор зарядится, и в нем накопится количество электричества q = CU.
Если конденсатор переключить на магнитоэлектрический измеритель тока, то
через него пройдет количество электричества q, вызвав отклонение указателя.
Если конденсатор поочередно присоединять к источнику напряжения для заряда
и к измерителю тока для разряда с частотой переключения f раз в секунду, то
количество электричества, проходящее через амперметр при разряде, будет в f
раз больше: fq = fCU = I, где I —среднее значение тока разряда. Отсюда
следует, что ток в такой схеме прямо пропорционален частоте переключения и
при постоянном произведении CU шкалу амперметра можно градуировать в
единицах частоты:
f=I/(CU) (2)
[pic]
Рис. 1. Структурная схема конденсаторного
частотомера
Структурная схема конденсаторного частотомера, в котором использован этот
метод (рис. 11), состоит из усилителя-ограничителя УО и Зарядно-разрядного
устройства ЗРУ с магнитоэлектрическим индикатором. Кроме того, имеется
генератор Гк для калибровки частотомера на одной фиксированной частоте. На
вход частотомера поступает напряжение измеряемой частоты. В усилителе-
ограничителе оно принимает форму меандра. Меандр управляет зарядно-
разрядным устройством, схема которого приведена на рис. 2. [pic]
Рис. 2. Схема счетного устройства конденсаторного частотомера
Транзистор Т работает в режиме ключа: когда он закрыт, один ii3
конденсаторов С заряжается через резистор R, а когда транзистор открыт, тот
же конденсатор разряжается через транзистор. Зарядный ток протекает через
магнитоэлектрический миллиамперметр, градуированный в единицах частоты
Добавить в Одноклассники    

 

Rambler's Top100