Рефераты Измерение случайных процессов

Вернуться в Цифровые устройства

Измерение случайных процессов
Реферат на тему : Измерение случайных процессов.



Содержание


1. Общие сведения об измерениях. . . . . . . . . . . . . . . . . . . стр
3.
2. Измерения математического ожидания и дисперсии случайного процесса. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . стр 9.
3. Измерение функций распределения вероятности. . . . стр 11.
4. Измерения корреляционной функции. . . . . . . . . . . . . . стр 13.
5. Анализ спектра мощности. . . . . . . . . . . . . . . . . . . . . . .
стр 14.
6. Приложения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . стр 16.
7. Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . стр 17.



ИЗМЕРЕНИЯ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ ПРОЦЕССОВ

1. ОБЩИЕ СВЕДЕНИЯ

Измерения вероятностных характеристик случайных процессов
(статистические измерения) составляют один из наиболее быстро развивающихся
разделов измерительной техники. В настоящее время область распространения
статистических методов исследования и обработки сигналов измерительной
информации практически безгранична. Связь, навигация, управление,
диагностика (техническая, медицинская), исследование среды и многие другие
области немыслимы без знания и использования свойств сигналов и помех,
описываемых их вероятностными характеристиками.
Потребность в изучении свойств случайных процессов привела к развитию
соответствующих методов и средств (преимущественно электрических).
Появление анализаторов функций распределения вероятностей, коррелометров,
измерителей математического ожидания, дисперсиометров и других видов
измерителей вероятностных характеристик открыло новые возможности в области
создания современной информационной и управляющей техники.
Рассмотрим необходимые исходные определения и общие сведения о
статистических измерениях.
В теории статистических измерений используют следующие понятия и их
аналоги, заимствованные из теории случайных функций (аналоги из
математической статистики): реализация случайного процесса (выборочная
функция), мгновенное значение (выборочное значение), совокупность
мгновенных значений (выборка), вероятностная характеристика (предел
выборочного среднего).
Введем следующие обозначения: Х (t) — случайный процесс;
i-порядковый номер реализации случайного процесса Х (t);
xi(tj) —мгновенное значение процесса Х (t), соответствующее значению (i-
й реализации в j-й момент времени. Случайным называют процесс Х (t),
мгновенные значения которого xi (tj) суть случайные величины.
На рис.1 представлена в качестве примера совокупность реализации
случайного процесса, воспроизводящих зависимости некоторого параметра Х от
времени t.
В теории случайных процессов их полное описание производится с помощью
систем вероятностных характеристик: многомерных функций распределения
вероятности, моментных функций, характеристических функций и т. п. В теории
статистических измерений исследуемый случайный процесс представляется
своими реализациями, причем полное представление осуществляется с помощью
так называемого ансамбля, т. е. бесконечной совокупностью реализаций.
Ансамбль — математическая абстракция, модель рассматриваемого процесса, но
конкретные реализации, используемые в измерительном эксперименте,
представляют собой физические объекты или явления и входят в ансамбль как
его неотъемлемая часть.
Если случайный процесс представлен ансамблем реализации xi (t), i=1, 2,
..., со, то вероятностная характеристика в может быть определена
усреднением по совокупности, т.е.
N
? [X (t)]=lim 1/N ? g[xi(t)], (1)
N> ? i =1

где g [Xi (t)]— некоторое преобразование, лежащее в основе определения
вероятностной характеристики ?
Добавить в Одноклассники    

 

Rambler's Top100